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Abstract

In this study the closed form solution is obtained, apparently for the first time, for the free vibration
inhomogeneous bar with a tip mass. It is remarkable that while a vibrations study the homogeneous bar
with free tip leads to transcendental equation, here, in the case of the inhomogeneous bar, a closed form
polynomial solution is obtained. If the mass ratio between the bar’s mass and the concentrated mass is
specified, numerical evaluation is needed for the axial rigidity coefficients’ ratio; on the other hand, for
specified mass ratios closed form solution is reported.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Free longitudinal vibration of bars was studied in a number of papers. Various complicated
effects were investigated by G +urgöze and Ynceoglu [1], Li et al. [2] and Li [3,4]. In these papers
exact solution has been derived for bars with uniform or non-uniform cross-section. Effect of the
tip mass has been investigated in several textbooks, for the uniform bar. The reader may consult,
for example, the text by Rao [5]. It makes sense to recapitulate some basic results from the
uniform homogeneous bar. For the rod of uniform cross-section the governing differential
equation reads

c2q2uðx; tÞ=qx2 ¼ q2uðx; tÞ=qt2, (1)
see front matter r 2005 Elsevier Ltd. All rights reserved.
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where uðx; tÞ is the axial displacement, c ¼ ðE=rÞ1=2 the speed of longitudinal waves, E the
modulus of elasticity, A the cross-sectional area, r the mass density. The classical solution
obtained by separation of variables is given by

uðx; tÞ ¼ UðxÞTðtÞ ¼ ½A cosðox=cÞ þ B sinðox=cÞ�ðC cosot þ D sinotÞ. (2)

For the bar that is fixed at x ¼ 0, the boundary condition is

uð0; tÞ ¼ 0. (3)

For the case of the mass at the tip, the tensile force in the bar equals the inertial force of the mass
M, so that

AE quðL; tÞ=qx ¼ �Mq2uðL; tÞ=qt2, (4)

where L is the length of the rod. This leads to the transcendental equation

AEðo=cÞ cosðoL=cÞ ¼ Mo2 sinðoL=cÞ. (5)

We introduce the non-dimensional variable

l ¼ oL=c. (6)

We get instead of Eq. (5)

l tan l ¼ 1=a, (7)

where a is the mass ratio

a ¼ c2M=AEL ¼ M=rAL ¼ M=m, (8)

and where m ¼ rAL is the mass of the bar. Thus, the concentrated mass is expressed as fraction of
the beam mass. Rao [5] lists the natural frequencies of the bar for the mass ratio a taking the
values 0:01; 0:1; 1:0; 10:0 and 100.0.
Exact solution for the bars of varying cross-section has been reported by Graf [6]; namely,

cross-sectional areas with linear, conical, exponential or catenoidal variation were studied. The
solution was written in terms of Bessel functions. Abrate [7] obtained several elegant solutions for
non-uniform rods. Eisenberger [8] devised as numerical scheme based on series solution, yielding
arbitrarily small deviations from the exact solution. Candan and Elishakoff [9] furnished closed-
form solutions for the inhomogeneous bars without a concentrated mass. They postulated the
polynomial mode shape along with the polynomial flexural rigidity of the bar.
In this study the work by Candan and Elishakoff [9] is being generalized for the bar with tip as

mass.
2. Basic equations

Consider free vibrations of an inhomogeneous bar with variable modulus of elasticity
E ¼ EðxÞ.
The governing differential equation reads

q
qx

DðxÞ
qu

qx

� �
¼ rðxÞAðxÞ

q2u
qt2

. (9)
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The axial rigidity DðxÞ ¼ EðxÞAðxÞ is variable due to the axial variability of the elastic modulus.
Cross-sectional areas A and material density r are considered as constants. For the free vibration
we set

uðxÞ ¼ UðxÞ sinot. (10)

We considered a bar which is clamped at x ¼ 0, so the boundary conditions given in Eq. (3) is
applicable at x ¼ L, where the mass M is attached, so that the boundary condition (4) holds.
We introduce the non-dimensional axial coordinate

x ¼ x=L. (11)

In view of Eqs. (10) and (11) the governing differential equation (9) becomes

d

dx
DðxÞ

dU

dx

� �
þ rAL2o2U ¼ 0. (12)

Following Ref. [10], we express the mode shape as a parabola:

UðxÞ ¼ a0 þ a1xþ a2x
2. (13)

Satisfaction of boundary condition in Eq. (3) yields a0 ¼ 0. Satisfaction of boundary conditions
(4) results in the mode shape

UðxÞ ¼ �
2ðb0 þ b1 þ b2Þ � MLo2

b0 þ b1 þ b2 � MLo2
xþ x2. (14)

Note that for the bar without concentrated mass at the tip M ¼ 0, we get UðxÞ ¼ �2xþ x2 which
is proportional to the mode shape obtained for this case in Ref. [10]. By setting and arbitrary
coefficient a2 to unity and bearing in mind that AðxÞEðxÞ ¼ DðxÞ, the axial rigidity is sought as a
parabolic function

DðxÞ ¼ b0 þ b1xþ b2x
2, (15)

where the coefficients b0; b1 and b2 should be determined so that it constitutes a physically
realizable quantity, i.e. is positive throughout the bar’s axis for x 2 ½0; 1�.
Substitution of Eqs. (14) and (15) into the governing differential equation (12) leads to

c0 þ c1xþ c2x
2
¼ 0, (16)

where

c0 ¼ 2b0 � ð2b0b1 þ 2b21 þ 2b1b2 þ b1MLo2Þ=F0 ¼ 0, (17)

c1 ¼ 4b1 � ð4b0b2 þ 4b2
2 � 2b2MLo2 þ 2ro2L2b2 þ 4b1b2

þ 2ro2L2b0 þ 2ro2L2b1 � ro4L3MÞ=F0, ð18Þ

c2 ¼ 6b2 þ ro2L2, (19)
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where

F0 ¼ b0 þ b1 þ b2 ¼ MLo2. (20)

From Eq. (19) we conclude that

o2 ¼ �6b2=rL2. (21)

In order for this natural frequency squared to correspond to the realistic problem, it is necessary
for b2 to be a negative quantity. With Eq. (20) in mind, Eq. (17) becomes

4b1 þ ð8b0b2 þ 8b22 þ 24ab22 þ 8b1b2Þ=F1 ¼ 0, (22)

where

F1 ¼ b0 þ b1 þ b2 þ 6ab2. (23)

Eq. (22) is further simplified to

b0b1 þ b21 þ 3b1b2 þ 6ab1b2 þ 2b0b2 þ 2b2
2 þ 6ab2

2 ¼ 0. (24)

We express b0 from this equation as

b0 ¼ �½b2
1 þ 3b1b2ð1þ 2aÞ þ 2b2

2ð1þ 3aÞ�=ðb1 þ 2b2Þ. (25)

Eq. (17), namely c0 ¼ 0, becomes, after some algebra,

�b31 þ 6b1b
2
2 þ 12ab1b

2
2 þ 4b3

2 þ 12ab3
2 ¼ 0. (26)

At this stage it is instructive to note that we have 4 unknowns, namely b0; b1; b2 and o2, whereas
we are in possession of three equations, c0 ¼ 0; c1 ¼ 0; c2 ¼ 0.
Thus, we have an infinite amount of solutions. If a unique solution is desired, one has to impose

an additional constraint. Here we specify the value of the natural frequency: we demand that the
fundamental natural frequency o equals a pre-selected value o0. This leads to the expression for
the coefficient b2 in view of Eq. (21)

b2 ¼ �rLo2=6. (27)

The coefficient b1 can be expressed in terms of b2:

b1 ¼ gb2. (28)

Eq. (26) takes the form of a depressed cubic equation

�g3 þ 6gð1þ 2aÞ þ 4ð1þ 3aÞ ¼ 0. (29)

This equation can be written in the canonical form

g3 þ 3pg þ 2q ¼ 0, (30)

where

p ¼ �2ð1þ 2aÞ; q ¼ �2ð1þ 3aÞ. (31)
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According to Cardano’s formula we form a discriminant

D ¼ q2 þ p3, (32)

which takes the following form, after substitution of Eq. (31)

D ¼ �4� 24a� 60a2 � 644a3. (33)

The discriminant D turns to be negative for any value of the mass ratio a. Therefore, Eq. (30) has
three real roots which are represented in the form

g1 ¼ u þ v; g2 ¼ �1u þ �2v; g3 ¼ �2u þ �1v, (34)

where

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q þ

ffiffiffiffi
D

p
3

q
; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q �

ffiffiffiffi
D

p
3

q
; �1 ¼ 0:5ð�1þ

ffiffiffi
3

p
iÞ; �2 ¼ �0:5ð�1þ

ffiffiffi
3

p
iÞ. (35)

As it is seen, the three real roots are written in terms of complex numbers, because of the
negativity of the discriminant. Therefore, it is preferable to use an alternative route of solution.
We fix the value of a and evaluate the roots directly.
Once Eq. (29) is solved, for a specified mass ratio a, Eq. (25) gives the value of the coefficient b0.

For the value a ¼ 1, the Eq. (29) has three real roots:

g1 ¼ �3:69770; g2 ¼ �0:93418; g3 ¼ 4:63188. (36)

For a ¼ 2, the ratios gj are

g1 ¼ �4:93179; g2 ¼ �0:96311; g3 ¼ 5:89490, (37)

while for a ¼ 3, the values of gj become

g1 ¼ �5:93836; g2 ¼ �0:97441; g3 ¼ 6:91277. (38)

Thus, the axial rigidity reads

DjðxÞ ¼
b2ð�g2

j � 21gj � 20þ g2
j xþ 2gjxþ x2gj þ 2x2Þ

gj þ 2
ð j ¼ 1; 2; 3Þ. (39)

The above discussion shows that for each mass ratio a there exist three bars that represent the
solutions of the problem. For a ¼ 1, the flexural rigidities are

D1ðxÞ ¼ ð�25:90487924� 3:697700100xþ xÞ2b2, (40)

D2ðxÞ ¼ ð�1:177402050� 0:9341807585xþ x2Þb2, (41)

D2ðxÞ ¼ ð�20:91771871þ 4:631880858xþ x2Þb2. (42)

These are shown in Fig. 1. For a ¼ 2 the triplet of the axial rigidity is given by

D1ðxÞ ¼ ð�20:20780547� 4:931789495xþ b2x
2
Þb2, (43)
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Fig. 1. Variation of flexural rigidity DðxÞ vs. non-dimensional axial coordinate x for a ¼ 1 ðD1ðxÞ, ——;

D2ðxÞ;� � �;D3ðxÞ; . . . . . .Þ.
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Fig. 2. Variation of flexural rigidity DðxÞ vs. non-dimensional axial coordinate x for a ¼ 2 ðD1ðxÞ, ——;

D2ðxÞ;� � �;D3ðxÞ; . . . . . .Þ.
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D2ðxÞ ¼ ð�0:6772451108� 0:9631122932xþ x2Þb2, (44)

D3ðxÞ ¼ ð�22:61494942þ 5:894901788xþ x2Þb2. (45)

They are portrayed in Fig. 2. For a ¼ 3, we get

D1ðxÞ ¼ ð�17:63206750� 5:938361307xþ x2Þb2, (46)

D2ðxÞ ¼ ð�0:4747363744� 0:9744089218xþ x2Þb2, (47)

D3ðxÞ ¼ ð�23:89319611þ 6:912770229xþ x2Þb2. (48)

They are depicted in Fig. 3.
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Fig. 3. Variation of flexural rigidity DðxÞ vs. non-dimensional axial coordinate x for the mass ratio a ¼ 3 ðD1ðxÞ, ——;

D2ðxÞ;� � �;D3ðxÞ; . . . . . .Þ.
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3. Closed-form solutions

For specified values of the mass ratio a one can obtain closed-form solutions; indeed, from Eq.
(29) we express a as a function of g:

a ¼ ðg3 � 6g � 4Þ=12ðg þ 1Þ. (49)

Therefore, if we pre-select g ¼ g
, we get the appropriate value of a from the latter equation
yielding the closed-form solution. For example, for g
 ¼ �3, we get a ¼ 13=24; for
g
 ¼ �4; a ¼ 11=9; for g
 ¼ �5; a ¼ 33=16; for g
 ¼ �6; a ¼ 46=15; for g
 ¼ 4; a ¼ 3=5; for
g
 ¼ 5; a ¼ 91=72; for g
 ¼ 6; a ¼ 44=21; for g ¼ 7; a ¼ 99=32. The cases of g
 ¼ �3; g
 ¼

�4; g
 ¼ �5 are shown in Fig. 4, as an example, DðxÞ equals in these cases:

DðX Þ ¼ 34þ 3X � X 2 for g
 ¼ �3, (50)

DðX Þ ¼ 24þ 4X � X 2 for g
 ¼ �4, (51)

DðX Þ ¼ 20þ 5X � X 2 for g
 ¼ �5. (52)

The cases of g
 ¼ 3; g
 ¼ 4; g
 ¼ 5, are shown in Fig. 5, as an example, DðxÞ equals in these
cases:

DðxÞ ¼ 92=5� 3x� x2 for g
 ¼ 3, (53)

DðxÞ ¼ 20� 4x� x2 for g
 ¼ 4, (54)

DðxÞ ¼ 150=7� 5x� x2 for g
 ¼ 5. (55)
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Fig. 5. Variation of flexural rigidity DðxÞ vs. non-dimensional axial coordinate x for the mass ratio: ——,

g
 ¼ 3;� � �; g
 ¼ �4; . . . . . . ; g
 ¼ 5.
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Fig. 4. Variation of flexural rigidity DðxÞ vs. non-dimensional axial coordinate x for the mass ratio: ——,

g
 ¼ �3;� � �; g
 ¼ �4; . . . . . . ; g
 ¼ �5.
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4. Conclusion

To the best knowledge of the present authors no closed-form solution has been reported for
inhomogeneous bars with tip mass, prior to this investigation. The solution appears to be
stunningly simple. It appears that the material can be included even in the curriculum of an upper-
level undergraduate or graduate vibration course.
A remarkable conclusion is reached: for any specified mass ratio and pre-set coefficient b2o0,

three beams are found that solve three posed problem. For the investigated values of a, the
flexural rigidities turn out to be physically realizable, since they are positive in the range of interest
0pxp1.
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